These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Regulation by cAMP and vasoactive intestinal peptide of phosphorylation of specific proteins in striatal cells in culture. Author: Girault JA, Shalaby IA, Rosen NL, Greengard P. Journal: Proc Natl Acad Sci U S A; 1988 Oct; 85(20):7790-4. PubMed ID: 2845422. Abstract: We have studied three low molecular weight phosphoproteins, ARPP-16, ARPP-19, and ARPP-21 (cAMP-regulated phosphoproteins of Mr 16,000, 19,000, and 21,000, respectively) in reaggregate cultures from various regions of fetal mouse brain. ARPP-16 and ARPP-21 were detected only in striatal and cortical cultures. In contrast, ARP-19, which is structurally related to ARPP-16, was also present in reaggregate cultures prepared from thalamus and ventral and dorsal mesencephalon, as well as in monolayer cultures of astroglial cells. In striatal aggregates cultured over a 3-week period, the relative levels of ARPP-16, ARPP-21, and synapsin I/protein IIIa (synaptic vesicle-associated phosphoproteins closely related to each other and treated as a single entity in the present study) increased with time, whereas the level of ARPP-19 decreased. Incubation of striatal aggregates with 8-Br-cAMP, forskolin, or vasoactive intestinal peptide increased the phosphorylation of all these proteins. We conclude that the state of phosphorylation of two proteins enriched in specific neurons (ARPP-16 and ARPP-21) and two more widely distributed proteins (ARPP-19 and synapsin I/protein IIIa) is regulated by cAMP and vasoactive intestinal peptide in striatal cells in culture. These phosphoproteins may therefore play a role in mediating some of the actions of vasoactive intestinal peptide in the caudate-putamen.[Abstract] [Full Text] [Related] [New Search]