These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Postural responses in the upper limbs evoked by axial impulses: a role for reticulospinal projections.
    Author: Teng B, Govender S, Colebatch JG.
    Journal: Exp Brain Res; 2017 Jul; 235(7):2235-2242. PubMed ID: 28455739.
    Abstract:
    We studied the short-latency (SL) postural effects of axial impulses in 11 subjects (22 ± 2 years old). Recordings were made bilaterally from soleus and tibialis anterior (TA) muscles. We confirmed that with leaning anteriorly and posteriorly, reflex EMG increases occurred in both muscle groups at short latency following brief perturbations applied over C7 or the sternum (soleus mean latencies 57.5 and 66.4 ms; TA mean 51.7 and 55.4 ms, respectively). While the size of the SL reflexes was affected by the direction of lean when standing we found that light touch did not affect the amplitudes or latencies significantly. We investigated the presence of SL responses in the upper limb muscle triceps brachii during an isometric contraction and when the arm muscles had a direct role in supporting approximately 40% of the body weight. Similar levels of tonic EMG activity occurred in triceps in both conditions but significantly larger SL reflexes occurred when used posturally compared to the isometric contraction (23.0 vs 3.3%) while the reverse occurred for SL responses in soleus and TA, which were significantly attenuated. The responses were present with the head in the neutral position but with head rotation were larger contralateral to the direction of rotation. Calculations based upon the relative latencies suggest that the pathway responsible is not the corticospinal tract. We conclude that axially evoked SL postural reflexes are unaffected by light tactile input but are present in upper limb muscles when used for postural support. We propose that the pathway mediating these responses is the reticulospinal tract.
    [Abstract] [Full Text] [Related] [New Search]