These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Binding of manganese ions to the Na+/K+-ATPase during phosphorylation by ATP. Author: Campos M, Beaugé L. Journal: Biochim Biophys Acta; 1988 Oct 06; 944(2):242-8. PubMed ID: 2846058. Abstract: The aim of the present work was to study the Mg2+-Na+/K+-ATPase interaction that was proposed to lead to the formation of a stable Mg-enzyme complex during phosphorylation from ATP. Instead of Mg we used Mn, which can replace Mg as essential activator of Na+/K+-ATPase activity. The amounts of steady-state Mn bound to the enzyme were estimated at 0 degree C on the basis of the 54Mn remaining in the effluent after passing the reaction mixture through a cation exchange resin column. As a function of the MnCl2 concentration, the amount of Mn retained by the enzyme in the absence and presence of ATP showed a saturable and a linear component; the slope of the linear component was the same in both instances (0.016 nmol/mg per microM). The ATP-dependent Mn binding could be adjusted to a hyperbolic function with a Km of 0.76 microM. The ratio [ATP-dependent E-Mn]/[E-P] measured at 5 microM MnCl2 and 5 microM ATP was not different from 1.0, both in native (Mn-E2-P) as well as in a chymotrypsin treated enzyme (Mn-E1-P). When the Mn.E-P complex was allowed to react with KCl (E2-P form) or ADP (E1-P form), the enzyme was dephosphorylated and simultaneously lost the strongly bound Mn in such a way that the ratio [ATP-dependent E-Mn]/[E-P] remained 1:1. These results show the existence of strongly bound Mn ions to Na+/K+-ATPase during phosphorylation by ATP. That binding is (i) of high affinity for Mn, (ii) probably on a single site, and (iii) with a stoichiometry Mn-Pi of 1:1.[Abstract] [Full Text] [Related] [New Search]