These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Oxidation of amino acids and peptides in reaction with myeloperoxidase, chloride and hydrogen peroxide.
    Author: Drozdź R, Naskalski JW, Sznajd J.
    Journal: Biochim Biophys Acta; 1988 Nov 02; 957(1):47-52. PubMed ID: 2846070.
    Abstract:
    Oxidation was studied of N-acetyl derivatives of cystine, cysteine, methionine and glycyltryptophan employing the myeloperoxidase-Cl--H2O2 system at pH 4.5, 6.0 and 7.0. Moreover, oxidation of pentapeptide composed of Leu-Trp-Met-Arg-Phe-COOH with myeloperoxidase (donor:hydrogen-peroxide oxidoreductase, EC 1.11.1.7) and hypochlorite was also studied. It was found that amino-acid derivatives having an amino group bound to an acetyl residue react with functional groups of the side-chain. The -SH groups of N-acetylcysteine and the -SS- group of cystine oxidize to cysteic acid. Methionine residues oxidize to methionine sulphoxide, and tryptophan residues to a derivative of 2-oxoindolone. The same reaction products were obtained when respective amounts of hypochlorous acid were used instead of myeloperoxidase, Cl- and H2O2. Differences in the stoichiometry of reactions of myeloperoxidase-mediated oxidation and hypochlorite oxidation suggest differences in the reaction mechanisms of both studied systems. Interaction of the studied pentapeptide with myeloperoxidase-Cl(-)-H2O2 system as well as with hypochlorite showed that in the peptide molecule individual amino acids oxidize consecutively according to their susceptibility to oxidation. No splitting of peptide bonds was observed. Therefore, a modified peptide with methionine sulphoxide and and oxidized tryptophan incorporated into the molecule was obtained.
    [Abstract] [Full Text] [Related] [New Search]