These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Phenotypic and functional characterization of human T cell clones. Author: Patel SS, Duby AD, Thiele DL, Lipsky PE. Journal: J Immunol; 1988 Dec 01; 141(11):3726-36. PubMed ID: 2846692. Abstract: The capacity of human peripheral blood-derived T cell clones to carry out a variety of functions was examined. T cell clones were generated by stimulating individual peripheral blood T cells with PHA by a procedure that yielded a growing clone from a mean of greater than 92% of the cultured cells. A total of 65 T cell clones (44 CD4+ and 21 CD8+) generated from two individual donors were examined for their functional capabilities. All T cell clones examined secreted IL-2, IFN-gamma, and lymphotoxin/tumor necrosis factor like activity when stimulated with immobilized mAb to the CD3 complex (64.1). When 54 additional T cell clones from a third donor were analyzed, all were found to produce IL-2. Upon activation with immobilized 64.1, all CD4+ clones and 91% of the CD8+ clones induced the generation of Ig-secreting cells from purified B cells. The CD8+ clones that did not serve as Th cells alone were able to augment the capacity of fresh CD4+ cells to generate Ig-secreting cells. Each of these clones was also found to effect MHC-unrestricted cytotoxicity upon activation with immobilized 64.1. The CD8+ clones were somewhat more effective killers than CD4+ clones, although there was considerable overlap. A total of 18 clones was analyzed for TCR beta-chain gene rearrangement. Of the clones exhibiting rearrangements of the beta-chain gene, 94% were found to have a single rearrangement pattern. Finally, the detailed phenotype of 15 (11 CD4+ and 4 CD8+) of these clones was examined. Variable numbers of cells of each of the clones expressed Ag identified by mAb 4B4 (CD29), Leu 8, Leu 15 (CD11b), and NKH1. Moreover, cells of 6 of 11 CD4+ clones and 4 of 4 CD8+ clones also expressed CD45R in addition to CD29; expression of CD45R and CD29 varied with the activation status of the clone. The current data demonstrate that nearly all of the T cell clones were able to accomplish each of the functions examined regardless of the surface phenotype. Inasmuch as the clones were generated using a technique that expanded more than 92% of the circulating T cells, the data imply that the progeny of the vast majority of T cells may have the inherent capacity to exert a wide array of functional activities.[Abstract] [Full Text] [Related] [New Search]