These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Functional analysis of two sterol regulatory element binding proteins in Penicillium digitatum. Author: Ruan R, Wang M, Liu X, Sun X, Chung KR, Li H. Journal: PLoS One; 2017; 12(5):e0176485. PubMed ID: 28467453. Abstract: The sterol regulatory element binding proteins (SREBPs) are key regulators for sterol homeostasis in most fungi. In the citrus postharvest pathogen Penicillium digitatum, the SREBP homolog is required for fungicide resistance and regulation of CYP51 expression. In this study, we identified another SREBP transcription factor PdSreB in P. digitatum, and the biological functions of both SREBPs were characterized and compared. Inactivation of PdsreA, PdsreB or both genes in P. digitatum reduced ergosterol contents and increased sensitivities to sterol 14-α-demethylation inhibitors (DMIs) and cobalt chloride. Fungal strains impaired at PdsreA but not PdsreB increased sensitivity to tridemorph and an iron chelator 2,2'-dipyridyl. Virulence assays on citrus fruit revealed that fungal strains impaired at PdsreA, PdsreB or both induce maceration lesions similar to those induced by wild-type. However, ΔPdsreA, ΔPdsreB or the double mutant strain rarely produce aerial mycelia on infected citrus fruit peels. RNA-Seq analysis showed the broad regulatory functions of both SREBPs in biosynthesis, transmembrane transportation and stress responses. Our results provide new insights into the conserved and differentiated regulatory functions of SREBP homologs in plant pathogenic fungi.[Abstract] [Full Text] [Related] [New Search]