These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Biochemical localization of hepatic surface-membrane Na+,K+-ATPase activity depends on membrane lipid fluidity. Author: Sutherland E, Dixon BS, Leffert HL, Skally H, Zaccaro L, Simon FR. Journal: Proc Natl Acad Sci U S A; 1988 Nov; 85(22):8673-7. PubMed ID: 2847169. Abstract: Membrane proteins of transporting epithelia are often distributed between apical and basolateral surfaces to produce a functionally polarized cell. The distribution of Na+,K+-ATPase [ATP phosphohydrolase (Na+/K+-transporting), EC 3.6.1.37] between apical and basolateral membranes of hepatocytes has been controversial. Because Na+,K+-ATPase activity is fluidity dependent and the physiochemical properties of the apical membrane reduces its fluidity, we investigated whether altering membrane fluidity might uncover cryptic Na+,K+-ATPase in bile canalicular (apical) surface fractions free of detectable Na+,K+-ATPase and glucagon-stimulated adenylate cyclase activities. Apical fractions exhibited higher diphenylhexatriene-fluorescence polarization values when compared with sinusoidal (basolateral) membrane fractions. When 2-(2-methoxyethoxy)ethyl 8-(cis-2-n-octylcyclopropyl)octanoate (A2C) was added to each fraction, Na+,K+-ATPase, but not glucagon-stimulated adenylate cyclase activity, was activated in the apical fraction. In contrast, further activation of both enzymes was not seen in sinusoidal fractions. The A2C-induced increase in apical Na+,K+-ATPase approached 75% of the sinusoidal level. Parallel increases in apical Na+,K+-ATPase were produced by benzyl alcohol and Triton WR-1339. All three fluidizing agents decreased the order component of membrane fluidity. Na+,K+-ATPase activity in each subfraction was identically inhibited by the monoclonal antibody 9-A5, a specific inhibitor of this enzyme. These findings suggest that hepatic Na+,K+-ATPase is distributed in both surface membranes but functions more efficiently and, perhaps, specifically in the sinusoidal membranes because of their higher bulk lipid fluidity.[Abstract] [Full Text] [Related] [New Search]