These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Anti-tumor activity of an immunotoxin (TGFα-PE38) delivered by attenuated Salmonella typhimurium.
    Author: Lim D, Kim KS, Kim H, Ko KC, Song JJ, Choi JH, Shin M, Min JJ, Jeong JH, Choy HE.
    Journal: Oncotarget; 2017 Jun 06; 8(23):37550-37560. PubMed ID: 28473665.
    Abstract:
    The anticancer strategy underlying the use of immunotoxins is as follows: the cancer-binding domain delivers the toxin to a cancer cell, after which the toxin enters and kills the cell. TGFα-PE38 is an immunotoxin comprising transforming growth factor alpha (TGFα), a natural ligand of epidermal growth factor receptor (EGFR), and a modified Pseudomonas exotoxin A (PE38) lacking N terminal cell-binding domain, a highly potent cytotoxic protein moiety. Tumor cells with high level of EGFR undergo apoptosis upon treatment with TGFα-PE38. However, clinical trials demonstrated that this immunotoxin delivered by an intracerebral infusion technique has only a limited inhibitory effect on intracranial tumors mainly due to inconsistent drug delivery. To circumvent this problem, we turned to tumor-seeking bacterial system. Here, we engineered Salmonella typhimurium to selectively express and release TGFα-PE38. Engineered bacteria were administered to mice implanted with mouse colon or breast tumor cells expressing high level of EGFR. We observed that controlled expression and release of TGFα-PE38 from intra-tumoral Salmonellae by either an engineered phage lysis system or by a bacterial membrane transport signal led to significant inhibition of solid tumor growth. These results demonstrated that delivery by tumor-seeking bacteria would greatly augment efficacy of immunotoxin in cancer therapeutics.
    [Abstract] [Full Text] [Related] [New Search]