These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mechanism of phosphaturia elicited by administration of phosphonoformate in vivo.
    Author: VanScoy M, Loghman-Adham M, Onsgard M, Szczepanska-Konkel M, Homma S, Knox FG, Dousa TP.
    Journal: Am J Physiol; 1988 Nov; 255(5 Pt 2):F984-94. PubMed ID: 2847555.
    Abstract:
    We examined whether phosphonoformate (PFA) can cause phosphaturia through its direct action on brush-border membrane (BBM) in vivo. Infusion of PFA or of parathyroid hormone (PTH) to thyroparathyroidectomized rats caused a marked increase in fractional excretion of phosphate without changes in excretion of Na+ or of GFR. The PFA-induced phosphaturia was not accompanied by an increase in urinary adenosine-3',5'-cyclic monophosphate (cAMP); moreover, PFA added in vitro did not influence the PTH-sensitive adenylate cyclase and cAMP-phosphodiesterase in proximal convoluted tubules. In BBM vesicles (BBMV) from rats with PFA-elicited phosphaturia, neither the rate of Na+-Pi symport nor Na+-dependent binding of [14C]PFA on BBMV was changed, whereas in BBMV from PTH-infused rats the Vmax of Na+-Pi symport decreased. PFA is almost completely ultrafiltrable; no metabolic transformation of PFA was detected after [14C]PFA exposure to rat renal cortical slices, homogenate, or to blood. We conclude that PFA causes phosphaturia by direct inhibition of Na+-Pi symport across BBM in proximal tubules, acting from the luminal side. Thus PFA (foscarnet) has a unique direct mechanism of phosphaturic effect, via its action on Pi reabsorption in proximal tubules in vivo.
    [Abstract] [Full Text] [Related] [New Search]