These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Disturbances in Na+ transport systems induced by ethanol in human red blood cells. Author: Coca A, Garay R. Journal: Alcohol Clin Exp Res; 1988 Aug; 12(4):534-8. PubMed ID: 2847576. Abstract: The effects of ethanol on fluxes catalyzed by four Na+ transport systems (ouabain-sensitive Na+, K+ pump, bumetanide-sensitive Na+, K+ cotransport system, Na+:Li+- countertransport and anion carrier) and on Na+ and K+ leaks were investigated in human red blood cells. Ethanol concentrations higher than 32 mM were required in order to significantly modify erythrocyte Na+ transport function. The observed changes can be summarized as follows: (a) stimulation of Na+ efflux through the Na+, K+ pump (by 21-32% at 160-400 mM) and Na+:Li+ countertransport (by 34-59% at 160-400 mM); (b) inhibition of outward Na+, K+ cotransport (by 23-34% at 160-400 mM) and LiCO3- influx through the anion carrier (by 17-21% at 64-400 mM); and (c) increase in Na+ and K+ leaks (by 13-16% at 64-400 mM). The effects of ethanol on the Na+,K+ pump and Na+,K+ cotransport system resulted from changes in maximal rates of Na+ efflux (increased and decreased, respectively) without any significant effect on the apparent affinities for internal Na+. Erythrocytes preincubated for 1 hr with 160 mM ethanol, washed and further incubated in flux media, recovered a normal Na+ transport function. In conclusion, high concentrations of ethanol induced reversible perturbations of fluxes catalyzed by erythrocyte Na+ transport systems. The observed effects may reflect disturbances in Na+ transport function associated with severe intoxication.[Abstract] [Full Text] [Related] [New Search]