These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Expression signatures of long non-coding RNA in the substantia nigra of pre-symptomatic mouse model of Parkinson's disease.
    Author: Jiao F, Wang Q, Zhang P, Bu L, Yan J, Tian B.
    Journal: Behav Brain Res; 2017 Jul 28; 331():123-130. PubMed ID: 28476570.
    Abstract:
    Parkinson's disease (PD) is an age-dependent neurodegenerative disease that can be caused by a variety of factors. Growing evidence shows that prior to the motor phase of PD can express molecular or imaging markers. Many long non-coding RNAs (lncRNAs) have been identified in neurodegenerative disease. However, the biogenesis and function of lncRNAs in the pre-symptomatic stage of PD is poorly understood. Here, we profiled the expression of lncRNAs and mRNAs in the substantia nigra pars compacta (SNpc) of pre-symptomatic mice over-expressing human A30P*A53T α-synuclein by microarray analysis. Based on the Pearson correlation analysis, lncRNA/mRNA co-expression network was constructed. GO enrichment and pathway analysis of lncRNAs-coexpressed mRNAs was conducted to identify the related biological function and pathologic pathways. Real-time PCR was used to detect the expression pattern of lncRNAs. Approximately 756 lncRNAs were aberrantly expressed in the SNpc of early over-expressing human A30P*A53T α-synuclein transgenic mice, including 477 downregulated lncRNAs and 279 upregulated lncRNAs. GO analysis indicated that these lncRNAs-coexpressed mRNAs were targeted to regulation of transcription (ontology: biological process), membrane (ontology: cellular component), and protein binding (ontology: molecular function). Pathway analysis indicated that lncRNAs-coexpressed mRNAs were mostly enriched in axon guidance signaling pathway. In conclusion, the present study firstly identified a series of novel early PD-associated lncRNAs caused by mutant α-synuclein. Further study the function of these aberrantly expressed lncRNAs may provide insight into treatment of early PD.
    [Abstract] [Full Text] [Related] [New Search]