These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: In vitro and in vivo evaluation of folate-mediated PEGylated nanostructured lipid carriers for the efficient delivery of furanodiene. Author: Zhang J, He Y, Jiang J, Li M, Jin C, Wang L, Wang D. Journal: Drug Dev Ind Pharm; 2017 Oct; 43(10):1610-1618. PubMed ID: 28481661. Abstract: Furanodiene (FN) loaded FA-PEG2000-DSPE modified nanostructured lipid carriers (FA-FN-NLCs) were developed to increase the solubility and bioavailability of FN, prolong the circulation time in blood and improve the targeting ability. FA-FN-NLCs were prepared using emulsification-ultrasonic and low temperature-solidification method and optimized by central composition design (CCD). In vitro and in vivo characteristics of FA-FN-NLCs were investigated in detail. The optimized formulations exhibited a spherical shape with particle size of 127.4 ± 2.62 nm, PDI of 0.268 ± 0.04, zeta potential of -14.7 ± 1.08 mV, high encapsulation efficiency of 89.04 ± 2.26% and loading capacity of 8.46 ± 0.20%. Differential scanning calorimetry (DSC) indicated that FN was not in crystalline state in FA-FN-NLCs. In vitro drug release exhibited a biphasic release pattern which showed a relative burst drug release at the initial time and followed by a prolonged drug release. In vivo, compared with FN solution (FN-SOL) and FN loaded traditional NLCs (FN-NLCs), FA-FN-NLCs had a longer blood circulating time (t1/2) and higher area under the curve (AUC). NiR fluorescence imaging study demonstrated that FA-FN-NLCs specially accumulated in tumor site by the receptor-mediated endocytosis. This study showed that FA-FN-NLCs was a promising drug delivery system for FN in the treatment of cancer.[Abstract] [Full Text] [Related] [New Search]