These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Photoperiod-insensitive floral transition in chrysanthemum induced by constitutive expression of chimeric repressor CsLHY-SRDX.
    Author: Oda A, Higuchi Y, Hisamatsu T.
    Journal: Plant Sci; 2017 Jun; 259():86-93. PubMed ID: 28483056.
    Abstract:
    A wide variety of physiological processes including flowering are controlled by the circadian clock in plants. In Arabidopsis, LATE ELONGATED HYPOCOTYL (LHY) and CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) constitute the central oscillator, and their gain of function and loss of function disrupt the circadian clock and affect flowering time through FLOWERING LOCUS T (FT), a gene encoding a florigen. Chrysanthemum is a typical short-day (SD) plant and responds to shortening of day length by the transition from the vegetative to reproductive phase. We identified FLOWERING LOCUS T-LIKE 3 (FTL3) and ANTI-FLORIGENIC FT/TFL1 FAMILY PROTEIN (AFT) as a florigen and antiflorigen, respectively, in a wild diploid chrysanthemum (Chrysanthemum seticuspe f. boreale). CsFTL3 and CsAFT are induced under SD or a noninductive photoperiod, respectively, and their balance determines the floral transition and anthesis. Meanwhile, the time-keeping mechanism that regulates the photoperiodic flowering in chrysanthemum is poorly understood. Here, we focused on a LHY/CCA1-like gene called CsLHY in chrysanthemum. We fused CsLHY to a gene encoding short transcriptional repressor domain (SRDX) and constitutively expressed it in chrysanthemum. Although the transcription of clock-related genes was conditionally affected, circadian rhythm was not completely disrupted in CsLHY-SRDX transgenic plants. These plants formed almost the same number of leaves before floral transition under SD and long-day conditions. Thus, CsLHY-SRDX chrysanthemum showed photoperiod-insensitive floral transition, but further development of the capitulum was arrested, and anthesis was not observed. Simultaneously with the flowering phenotype, CsFTL3 and CsAFT were downregulated in CsLHY-SRDX transgenic plants. These results suggest that CsLHY-SRDX affects CsFTL3 and CsAFT expression and causes photoperiod-insensitive floral transition without a severe defect in the circadian clock.
    [Abstract] [Full Text] [Related] [New Search]