These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ni0.85Se@MoSe2 Nanosheet Arrays as the Electrode for High-Performance Supercapacitors. Author: Peng H, Wei C, Wang K, Meng T, Ma G, Lei Z, Gong X. Journal: ACS Appl Mater Interfaces; 2017 May 24; 9(20):17067-17075. PubMed ID: 28485575. Abstract: In this study, we report novel Ni0.85Se@MoSe2 nanosheet arrays prepared by a facile one-step hydrothermal method through nickel (Ni) foam as Ni precursor and the framework of MoSe2. Owing to the unique interconnection and hierarchical porous nanosheet array architecture, the Ni0.85Se@MoSe2 nanosheet arrays exhibit a high specific capacitance of 774 F g-1 at the current density of 1 A g-1, which is almost 2 times higher than that (401 F g-1) of the Ni0.85Se matrix and about 7 times greater than that (113 F g-1) of the MoSe2 nanoparticles. Moreover, we report an asymmetric supercapacitor (ASC), which is fabricated by using the Ni0.85Se@MoSe2 nanosheet arrays as the positive electrode and the graphene nanosheets (GNS) as the negative electrode, with aqueous KOH as the electrolyte. The Ni0.85Se@MoSe2//GNS ASC possesses an output voltage of 1.6 V, an energy density of 25.5 Wh kg-1 at a power density of 420 W kg-1, and a cycling stability of 88% capacitance retention after 5000 cycles. These results indicate that the Ni0.85Se@MoSe2 nanosheet arrays are a good electrode for supercapacitors.[Abstract] [Full Text] [Related] [New Search]