These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A Superior Polymer Electrolyte with Rigid Cyclic Carbonate Backbone for Rechargeable Lithium Ion Batteries. Author: Chai J, Liu Z, Zhang J, Sun J, Tian Z, Ji Y, Tang K, Zhou X, Cui G. Journal: ACS Appl Mater Interfaces; 2017 May 31; 9(21):17897-17905. PubMed ID: 28488847. Abstract: The fabricating process of well-known Bellcore poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP)-based polymer electrolytes is very complicated, tedious, and expensive owing to containing a large amount of fluorine substituents. Herein, a novel kind of poly(vinylene carbonate) (PVCA)-based polymer electrolyte is developed via a facile in situ polymerization method, which possesses the merits of good interfacial compatibility with electrodes. In addition, this polymer electrolyte presents a high ionic conductivity of 5.59 × 10-4 S cm-1 and a wide electrochemical stability window exceeding 4.8 V vs Li+/Li at ambient temperature. In addition, the rigid cyclic carbonate backbone of poly(vinylene carbonate) endows polymer electrolyte a superior mechanical property. The LiFe0.2Mn0.8PO4/graphite lithium ion batteries using this polymer electrolyte deliver good rate capability and excellent cyclability at room temperature. The superior performance demonstrates that the PVCA-based electrolyte via in situ polymerization is a potential alternative polymer electrolyte for high-performance rechargeable lithium ion batteries.[Abstract] [Full Text] [Related] [New Search]