These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Prevention of red cell storage lesion: a comparison of five different additive solutions.
    Author: Lagerberg JW, Korsten H, Van Der Meer PF, De Korte D.
    Journal: Blood Transfus; 2017 Sep; 15(5):456-462. PubMed ID: 28488968.
    Abstract:
    BACKGROUND: In Europe, red cell concentrates (RCC) are usually stored in SAGM (saline-adenine-glucose-mannitol). During storage, in vitro red cell quality declines, including lowered energy status and increased cell lysis. Recently, several additive solutions (ASs), designed to diminish the decline in in vitro quality during storage, have been developed. These new solutions have mainly been developed to better maintain red blood cell (RBC) 2,3-biphosphoglycerate (2,3 BPG) levels and energy status during storage. High levels of 2,3 BPG allow for better oxygen release while high energy status is necessary for function and survival of RBC in vivo. In a paired study design, RBC ASs were compared for their ability to provide improved in vitro quality during hypothermic storage. MATERIALS AND METHODS: For each experiment, 5 whole blood units held overnight were pooled and split. The whole blood units were processed according to the buffy coat method. RBCs were resuspended in either SAGM, PAGGSM, PAG3M, E-Sol 5 or AS-7 and leucoreduced by filtration. RCCs were stored for eight weeks at 2-6 °C and sampled weekly for analysis of in vitro quality parameters. RESULTS: Red cell concentrates stored in PAG3M, E-Sol 5 and AS-7 showed significantly higher lactate production and higher levels of intracellular adenosine triphosphate (ATP) and total adenylate. 2,3 BPG levels rapidly declined during storage in SAGM and PAGGSM. The decline in 2,3 BPG was inhibited during storage in E-Sol 5 and AS-7, while in PAG3M, 2,3 BPG level increased above the initial level till day 35 and remained detectable till day 56. Haemolysis was comparable for all ASs until day 35, upon prolonged storage, haemolysis in SAGM was higher than with the other ASs. As compared to SAGM, storage in PAGGSM, PAG3M, E-Sol 5 and AS-7 better maintained morphological properties. DISCUSSION: Storage of RBCs in the new generation ASs yield RBCs with more stable metabolite levels and improved overall quality during storage as compared with RBCs stored in SAGM.
    [Abstract] [Full Text] [Related] [New Search]