These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Application of Soluplus to Improve the Flowability and Dissolution of Baicalein Phospholipid Complex. Author: Fan J, Dai Y, Shen H, Ju J, Zhao Z. Journal: Molecules; 2017 May 11; 22(5):. PubMed ID: 28492487. Abstract: In this study, a novel ternary complex system (TCS) composed of baicalein, phospholipids, and Soluplus was prepared to improve the flowability and dissolution for baicalein phospholipid complex (BPC). TCS was characterized using differential scanning calorimetry (DSC), infrared spectroscopy (IR), powder X-ray diffraction (PXRD), and scanning electron microscopy (SEM). The flowability, solubility, oil-water partition coefficient, in vitro dissolution, and in vivo pharmacokinetics of the system were also evaluated. DSC, IR, PXRD, and SEM data confirmed that the crystal form of baicalein disappeared in BPC and TCS. Furthermore, the angle of repose of TCS of 35° indicated an improvement in flowability, and solubility increased by approximately eight-fold in distilled water when TCS was compared with BPC (41.00 ± 4.89 μg/mL vs. 5.00 ± 0.16 μg/mL). Approximately 91.24% of TCS was released at the end of 60 min in 0.5% SDS (pH = 6.8), which suggested that TCS could improve the dissolution velocity and extent. Moreover, TCS exhibited a considerable enhancement in bioavailability with higher peak plasma concentration (25.55 μg/mL vs. 6.05 μg/mL) and increased AUC0-∞ (62.47 μg·h/mL vs. 50.48 μg·h/mL) with 123.75% relative bioavailability compared with BPC. Thus, Soluplus achieved the purpose of improving the flowability and solubility of baicalein phospholipid complexes. The application of Soluplus to phospholipid complexes has great potential.[Abstract] [Full Text] [Related] [New Search]