These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: C-terminal cleavage of the LH1 α-polypeptide in the Sr2+-cultured Thermochromatium tepidum.
    Author: Kimura Y, Kawakami T, Arikawa T, Li Y, Yu LJ, Ohno T, Madigan MT, Wang-Otomo ZY.
    Journal: Photosynth Res; 2018 Mar; 135(1-3):23-31. PubMed ID: 28493058.
    Abstract:
    The light-harvesting 1 reaction center (LH1-RC) complex in the thermophilic purple sulfur bacterium Thermochromatium (Tch.) tepidum binds Ca ions as cofactors, and Ca-binding is largely involved in its characteristic Q y absorption at 915 nm and enhanced thermostability. Ca2+ can be biosynthetically replaced by Sr2+ in growing cultures of Tch. tepidum. However, the resulting Sr2+-substituted LH1-RC complexes in such cells do not display the absorption maximum and thermostability of those from Ca2+-grown cells, signaling that inherent structural differences exist in the LH1 complexes between the Ca2+- and Sr2+-cultured cells. In this study, we examined the effects of the biosynthetic Sr2+-substitution and limited proteolysis on the spectral properties and thermostability of the Tch. tepidum LH1-RC complex. Preferential truncation of two consecutive, positively charged Lys residues at the C-terminus of the LH1 α-polypeptide was observed for the Sr2+-cultured cells. A proportion of the truncated LH1 α-polypeptide increased during repeated subculturing in the Sr2+-substituted medium. This result suggests that the truncation is a biochemical adaptation to reduce the electrostatic interactions and/or steric repulsion at the C-terminus when Sr2+ substitutes for Ca2+ in the LH1 complex. Limited proteolysis of the native Ca2+-LH1 complex with lysyl protease revealed selective truncations at the Lys residues in both C- and N-terminal extensions of the α- and β-polypeptides. The spectral properties and thermostability of the partially digested native LH1-RC complexes were similar to those of the biosynthetically Sr2+-substituted LH1-RC complexes in their Ca2+-bound forms. Based on these findings, we propose that the C-terminal domain of the LH1 α-polypeptide plays important roles in retaining proper structure and function of the LH1-RC complex in Tch. tepidum.
    [Abstract] [Full Text] [Related] [New Search]