These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Assessing time-of-flight signal-to-noise ratio gains within the myocardium and subsequent reductions in administered activity in cardiac PET studies. Author: Armstrong IS, Tonge CM, Arumugam P. Journal: J Nucl Cardiol; 2019 Apr; 26(2):405-412. PubMed ID: 28497418. Abstract: BACKGROUND: Time-of-flight (TOF) is known to increase signal-to-noise ratio (SNR) and facilitate reductions in administered activity. Established measures of SNR gain are derived from areas of uniform uptake, which is not applicable to the heterogeneous uptake in cardiac PET images using fluoro-deoxyglucose (FDG). This study aimed to develop a technique to quantify SNR gains within the myocardium due to TOF. METHODS: Reference TOF SNR gains were measured in 88 FDG oncology patients. Phantom data were used to translate reference SNR gains and validate a method of quantifying SNR gains within the myocardium from parametric images produced from multiple replicate images. This technique was applied to 13 FDG cardiac viability patients. RESULTS: Reference TOF SNR gains of +23% ± 8.5% were measured in oncology patients. Measurements of SNR gain from the phantom data were in agreement and showed the parametric image technique to be sufficiently robust. SNR gains within the myocardium in the viability patients were +21% ± 2.8%. CONCLUSION: A method to quantify SNR gains from TOF within the myocardium has been developed and evaluated. SNR gains within the myocardium are comparable to those observed by established methods. This allows guidance for protocol optimization for TOF systems in cardiac PET.[Abstract] [Full Text] [Related] [New Search]