These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Preparation and characterization of surface-modified PLGA-polymeric nanoparticles used to target treatment of intestinal cancer.
    Author: Ahmad N, Alam MA, Ahmad R, Naqvi AA, Ahmad FJ.
    Journal: Artif Cells Nanomed Biotechnol; 2018 Mar; 46(2):432-446. PubMed ID: 28503995.
    Abstract:
    Docetaxel (DTX), a cytotoxic taxane, is a poor water-soluble drug and exhibits less oral bioavailability. Current research investigates the effective transport, for DTX-loaded chitosan (CS)-coated-poly-lactide-co-glycolide (PLGA)-nanoparticles (NPs) (DTX-CS-PLGA-NPs) and DTX-PLGA-NPs as well as a novel third-generation P-gp inhibitor i.e. GF120918 (Elacridar), across intestinal epithelium with its successive uptake by the tumour cells in an in vitro model. The prepared NPs showed a spherical shape particle size i.e. <123.96 nm with polydispersity index (PDI) of <0.290 whereas for CS-coated NPs, the zeta potential was converted from negative to positive value along with a small modification in particle size distribution. The entrapment efficiency observed for DTX-CS-PLGA-NPs was 74.77%, whereas the in vitro release profile revealed an initial rapid DTX release followed by a sustained release pattern. For apparent permeability, DTX-CS-PLGA-NPs and DTX-PLGA-NPs along with GF120918 showed a five-fold (p < .01) and 2.2-fold enhancement, respectively, as observed in rat ileum permeation study. Similarly, for pharmacokinetic (PK) studies, higher oral bioavailability was observed from DTX-CS-PLGA-NPs (5.11-folds) and DTX-PLGA-NPs (3.29-folds) as compared with DTX-suspension (DTX-S). Cell uptake studies on A549 cells as performed for DTX-CS-PLGA-NPs and DTX-PLGA-NPs loaded with rhodamine 123 dye, exhibited enhanced uptake as compared with plain dye solution. The enhanced uptake for DTX-CS-PLGA-NPs and DTX-PLGA-NPs formulations in the presence of GF120918 was confirmed further with the help of confocal laser scanning microscopic images (CLSM). The potential of the third-generation novel P-gp inhibitor (GF120918) investigated for the effective delivery of DTX as well as investigation of permeability and uptake studies whereby a strong potential of GF120918 for effective oral delivery was established.
    [Abstract] [Full Text] [Related] [New Search]