These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hypertension-Causing Mutation in Peroxisome Proliferator-Activated Receptor γ Impairs Nuclear Export of Nuclear Factor-κB p65 in Vascular Smooth Muscle.
    Author: Mukohda M, Lu KT, Guo DF, Wu J, Keen HL, Liu X, Ketsawatsomkron P, Stump M, Rahmouni K, Quelle FW, Sigmund CD.
    Journal: Hypertension; 2017 Jul; 70(1):174-182. PubMed ID: 28507170.
    Abstract:
    Selective expression of dominant negative (DN) peroxisome proliferator-activated receptor γ (PPARγ) in vascular smooth muscle cells (SMC) results in hypertension, atherosclerosis, and increased nuclear factor-κB (NF-κB) target gene expression. Mesenteric SMC were cultured from mice designed to conditionally express wild-type (WT) or DN-PPARγ in response to Cre recombinase to determine how SMC PPARγ regulates expression of NF-κB target inflammatory genes. SMC-specific overexpression of WT-PPARγ or agonist-induced activation of endogenous PPARγ blunted tumor necrosis factor α (TNF-α)-induced NF-κB target gene expression and activity of an NF-κB-responsive promoter. TNF-α-induced gene expression responses were enhanced by DN-PPARγ in SMC. Although expression of NF-κB p65 was unchanged, nuclear export of p65 was accelerated by WT-PPARγ and prevented by DN-PPARγ in SMC. Leptomycin B, a nuclear export inhibitor, blocked p65 nuclear export and inhibited the anti-inflammatory action of PPARγ. Consistent with a role in facilitating p65 nuclear export, WT-PPARγ coimmunoprecipitated with p65, and WT-PPARγ was also exported from the nucleus after TNF-α treatment. Conversely, DN-PPARγ does not bind to p65 and was retained in the nucleus after TNF-α treatment. Transgenic mice expressing WT-PPARγ or DN-PPARγ specifically in SMC (S-WT or S-DN) were bred with mice expressing luciferase controlled by an NF-κB-responsive promoter to assess effects on NF-κB activity in whole tissue. TNF-α-induced NF-κB activity was decreased in aorta and carotid artery from S-WT but was increased in vessels from S-DN mice. We conclude that SMC PPARγ blunts expression of proinflammatory genes by inhibition of NF-κB activity through a mechanism promoting nuclear export of p65, which is abolished by DN mutation in PPARγ.
    [Abstract] [Full Text] [Related] [New Search]