These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Impairment of pH gradient and membrane potential mediates redox dysfunction in the mitochondria of the post-ischemic heart. Author: Kang PT, Chen CL, Lin P, Chilian WM, Chen YR. Journal: Basic Res Cardiol; 2017 Jul; 112(4):36. PubMed ID: 28508960. Abstract: The mitochondrial electrochemical gradient (Δp), which comprises the pH gradient (ΔpH) and the membrane potential (ΔΨ), is crucial in controlling energy transduction. During myocardial ischemia and reperfusion (IR), mitochondrial dysfunction mediates superoxide (·O2-) and H2O2 overproduction leading to oxidative injury. However, the role of ΔpH and ΔΨ in post-ischemic injury is not fully established. Here we studied mitochondria from the risk region of rat hearts subjected to 30 min of coronary ligation and 24 h of reperfusion in vivo. In the presence of glutamate, malate and ADP, normal mitochondria (mitochondria of non-ischemic region, NR) exhibited a heightened state 3 oxygen consumption rate (OCR) and reduced ·O2- and H2O2 production when compared to state 2 conditions. Oligomycin (increases ΔpH by inhibiting ATP synthase) increased ·O2- and H2O2 production in normal mitochondria, but not significantly in the mitochondria of the risk region (IR mitochondria or post-ischemic mitochondria), indicating that normal mitochondrial ·O2- and H2O2 generation is dependent on ΔpH and that IR impaired the ΔpH of normal mitochondria. Conversely, nigericin (dissipates ΔpH) dramatically reduced ·O2- and H2O2 generation by normal mitochondria under state 4 conditions, and this nigericin quenching effect was less pronounced in IR mitochondria. Nigericin also increased mitochondrial OCR, and predisposed normal mitochondria to a more oxidized redox status assessed by increased oxidation of cyclic hydroxylamine, CM-H. IR mitochondria, although more oxidized than normal mitochondria, were not responsive to nigericin-induced CM-H oxidation, which is consistent with the result that IR induced ΔpH impairment in normal mitochondria. Valinomycin, a K+ ionophore used to dissipate ΔΨ, drastically diminished ·O2- and H2O2 generation by normal mitochondria, but less pronounced effect on IR mitochondria under state 4 conditions, indicating that ΔΨ also contributed to ·O2- generation by normal mitochondria and that IR mediated ΔΨ impairment. However, there was no significant difference in valinomycin-induced CM-H oxidation between normal and IR mitochondria. In conclusion, under normal conditions the proton backpressure imposed by ΔpH restricts electron flow, controls a limited amount of ·O2- generation, and results in a more reduced myocardium; however, IR causes ΔpH impairment and prompts a more oxidized myocardium.[Abstract] [Full Text] [Related] [New Search]