These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Biocompatible microcrystalline cellulose particles from cotton wool and magnetization via a simple in situ co-precipitation method.
    Author: Rashid M, Gafur MA, Sharafat MK, Minami H, Miah MAJ, Ahmad H.
    Journal: Carbohydr Polym; 2017 Aug 15; 170():72-79. PubMed ID: 28522005.
    Abstract:
    This investigation describes the preparation of magnetically doped degradable microcrystalline cellulose (MCC) nanocomposite particles with application potential in biotechnology, solid support for biomolecule/water purification, oil recovery from water and beyond. MCC was first extracted from cotton wool, the most abundant biocompatible polymer, by sulfuric acid hydrolysis and the effect of acid strength was examined. The size of the elongated fiber structure was reduced with increasing acid strength. MCC particles extracted by treatment with 70% sulfuric acid were used to prepare magnetic MCC nanocomposite particles. The nanocomposite particles named as MCC/Fe3O4 were prepared via in situ co-precipitation of Fe+3/Fe+2 from their alkaline solution. The precipitated Fe3O4 nanoparticles are expected to be bonded with MCC particles via hydrogen bonding. The nanocomposite dispersion was colloidally stable and the particles responded when external magnetic field was applied. It was possible to control the magnetic property by regulating the content of iron oxide.
    [Abstract] [Full Text] [Related] [New Search]