These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Studies on terminal differentiation of rat renal proximal tubular cells in culture: ouabain-sensitive K and Na transport. Author: Larsson SH, Aperia A, Lechene C. Journal: Acta Physiol Scand; 1988 Feb; 132(2):129-34. PubMed ID: 2852433. Abstract: We have studied the ontogeny of Na-K ATPase-mediated Na and K transport in rat renal proximal tubular cells using electron probe analysis. The cells were cultured from kidneys of 10-day-old, young (Y), and 40-day-old, adult (A) rats. Before an experiment cells were Na-loaded and K-depleted by incubation in K-free medium. The maximum rate of ouabain-sensitive Na and K transport was measured after reactivating the Na-K pump by transferring the cells from K-free medium to medium containing 5 mM K. In cells cultured for 2 days, ouabain-sensitive Na and K net initial transport rates were significantly higher in A than in Y cells. Between 2 and 4 days in culture there was a significant decrease in ouabain-sensitive Na and K transport rates in both Y and A cells. From 2 to 4 days of culture there was, in Y but not in A cells, a significant decrease in K/Na ratio. The decrease in K/Na ratio was due to a significant increase in Na content. After incubation in K-free medium, net intracellular solute accumulation was observed in A and Y cells cultured for 4 days but not in A and Y cells cultured for 2 days. In conclusion, maximal Na- and K-pump-mediated transport increases during terminal differentiation. This increase can be measured in cells cultured for 2 days. With longer time in culture, Na-K pump activity decreases and the difference between A and Y cells is not measurable.(ABSTRACT TRUNCATED AT 250 WORDS)[Abstract] [Full Text] [Related] [New Search]