These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Performance of a High-Pressure Liquid Chromatography-Ion Mobility-Mass Spectrometry System for Metabolic Profiling. Author: Zhang X, Kew K, Reisdorph R, Sartain M, Powell R, Armstrong M, Quinn K, Cruickshank-Quinn C, Walmsley S, Bokatzian S, Darland E, Rain M, Imatani K, Reisdorph N. Journal: Anal Chem; 2017 Jun 20; 89(12):6384-6391. PubMed ID: 28528542. Abstract: A commercial liquid chromatography/drift tube ion mobility-mass spectrometer (LC/IM-MS) was evaluated for its utility in global metabolomics analysis. Performance was assessed using 12 targeted metabolite standards where the limit of detection (LOD), linear dynamic range, resolving power, and collision cross section (Ω) are reported for each standard. Data were collected in three different instrument operation modes: flow injection analysis with IM-MS (FIA/IM-MS), LC/MS, and LC/IM-MS. Metabolomics analyses of human plasma and HaCaT cells were used to compare the above three operation modes. LC/MS provides linearity in response, data processing automation, improved limits of detection, and ease of use. Advantages of LC/IM-MS and FIA/IM-MS include the ability to develop mobility-mass trend lines for structurally similar biomolecules, increased peak capacity, reduction of chemical/matrix noise, improvement in signal-to-noise, and separations of isobar/isomer compounds that are not resolved by LC. We further tested the feasibility of incorporating IM-MS into conventional LC/MS metabolomics workflows. In general, the addition of ion mobility dimension has increased the separation of compounds in complex biological matrixes and has the potential to largely improve the throughput of metabolomics analysis.[Abstract] [Full Text] [Related] [New Search]