These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Blood Pressure-Lowering Effects of Alacalase-Hydrolyzed Camellia Seed Hull In Vitro and in Spontaneous Hypertensive Rats.
    Author: Lim HJ, Kim MS, Kim DS, Kim YJ, Lee JH, Pan JH, Shin EC, Kim JK.
    Journal: J Med Food; 2017 Jul; 20(7):720-723. PubMed ID: 28537781.
    Abstract:
    High blood pressure is one of the major risk factors for various diseases and angiotensin-converting enzyme (ACE) plays a critical role in blood pressure regulation. In our study, the responsive surface methodology was adopted to establish optimal Alcalase-hydrolysis conditions of camellia seed hull against ACE activity. The optimum conditions are hydrolysis temperature of 50.98°C, enzyme/substrate ratio of 2.85%, and hydrolysis pH of 7.12. In an animal feeding study, spontaneously hypertensive rats were treated with either a low or high dose of hydrolyzed Camellia japonica seed cake over 5 weeks. Even though systolic blood pressure was not statistically different, the high dose of C. japonica hydrolysate lowered diastolic blood pressure (106 ± 4.4 mmHg vs. 145 ± 5.9 mmHg) at the 5th week. A similar trend was also observed in serum ACE activity. Considering that this camellia seed hull is a major resource of this plant, our study provides important data to utilize this plant for both academic and industrial applications.
    [Abstract] [Full Text] [Related] [New Search]