These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Endoplasmic reticulum stress promotes autophagy and apoptosis and reverses chemoresistance in human ovarian cancer cells. Author: Hu JL, Hu XL, Guo AY, Wang CJ, Wen YY, Cang SD. Journal: Oncotarget; 2017 Jul 25; 8(30):49380-49394. PubMed ID: 28537902. Abstract: Ovarian cancer presents the highest mortality rate among gynecological tumors. Here, we measured cell viability, proliferation, apoptosis, autophagy, and expression of endoplasmic reticulum stress (ERS)-related proteins, PI3K/AKT/mTOR pathway-related proteins, and apoptosis- and autophagy-related proteins in SKOV3 and SKOV3/CDDP cells treated with combinations of CDDP, tunicamycin, and BEZ235 (blank control, CDDP, CDDP + tunicamycin, CDDP + BEZ235, and CDDP + tunicamycin + BEZ235). Increasing concentrations of tunicamycin and CDDP activated ERS in SKOV3 cells, reduced cell viability and proliferation, increased apoptosis and autophagy, enhanced expression of ERS-related proteins, and inhibited expression of PI3K/AKT/mTOR pathway-related proteins. CDDP, tunicamycin, and BEZ235 acted synergistically to enhance these effects. We also detected lower expression of the ERS-related proteins caspase-3, LC3 II and Beclin 1 in ovarian cancer tissues than adjacent normal tissues. By contrast, expression of Bcl-2 and PI3K/AKT/mTOR pathway-related proteins was higher in ovarian cancer tissues than adjacent normal tissues. Lastly, expression of the ERS-related proteins Beclin 1, caspase-3 and LC3 II was higher in the sensitive group than the resistant group, while expression of Bcl-2, LC3 I, P62 and PI3K/AKT/mTOR pathway-related proteins was decreased. These results show that ERS promotes cell autophagy and apoptosis while reversing chemoresistance in ovarian cancer cells by inhibiting activation of the PI3K/AKT/mTOR signaling pathway.[Abstract] [Full Text] [Related] [New Search]