These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Sodium dependent 3H-noradrenaline release from rat neocortical slices in the absence of extracellular calcium: presynaptic modulation by mu-opioid receptor and adenylate cyclase activation.
    Author: Schoffelmeer AN, Hogenboom F, Mulder AH.
    Journal: Naunyn Schmiedebergs Arch Pharmacol; 1988 Nov; 338(5):548-52. PubMed ID: 2854212.
    Abstract:
    In Ca2+-free EGTA (1 mmol/l)-containing medium veratrine (3 mumol/l) and ouabain (100 mumol/l) strongly enhanced the efflux of 3H-noradrenaline from superfused rat brain neocortical slices prelabelled with the radioactive amine. In both cases 3H-noradrenaline release was prevented by tetrodotoxin (1 mumol/l). These effects of veratrine and ouabain were virtually additive and independent of whether the noradrenaline uptake carrier was blocked with 1 mumol/l desipramine or not. The adenylate cyclase activator forskolin (10 nmol/l - 10 mumol/l) strongly enhanced veratrine- and ouabain-induced 3H-noradrenaline release, without affecting spontaneous tritium efflux. The release induced by both stimuli was profoundly inhibited by the selective mu-opioid receptor agonist [D-Ala, MePhe4, Gly-ol5]enkaphalin (DAGO, 3 nmol/l - 1 mumol/l) in a concentration-dependent manner. The inhibitory effects of 1 mumol/l DAGO were abolished by 1 mumol/l naloxone. On the other hand, preincubation of the slices for 1 h with the delta-opioid receptor-selective irreversible ligand fentanyl isothiocyanate (1 mumol/l) did not change the inhibitory effects of DAGO. These data show that veratrine- and ouabain-induced 3H-noradrenaline release from central noradrenergic nerve terminals is facilitated by increasing intracellular cyclic AMP levels and reduced by activation of presynaptic mu-opioid receptors, indicating the involvement of exocytotic neurotransmitter release. The results provide further evidence for the hypothesis that under these conditions neurotransmitter release from central noradrenergic neurons is triggerred by a Na+-induced efflux of Ca2+ ions from intracellular stores.
    [Abstract] [Full Text] [Related] [New Search]