These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Fluvoxamine maleate effects on dopamine signaling in the prefrontal cortex of stressed Parkinsonian rats: Implications for learning and memory.
    Author: Dallé E, Daniels WMU, Mabandla MV.
    Journal: Brain Res Bull; 2017 Jun; 132():75-81. PubMed ID: 28549887.
    Abstract:
    Parkinson's disease (PD) is also associated with cognitive impairment and reduced extrinsic supply of dopamine (DA) to the prefrontal cortex (PFC). In the present study, we looked at whether exposure to early life stress reduces DA and serotonin (5-HT) concentration in the PFC thus leading to enhanced cognitive impairment in a Parkinsonian rat model. Maternal separation was the stressor used to develop an animal model for early life stress that has chronic effects on brain and behavior. Sprague-Dawley rats were treated with the antidepressant Fluvoxamine maleate (FM) prior to a unilateral 6-hydroxydopamine (6-OHDA) lesion to model motor deficits in rats. The Morris water maze (MWM) and the forelimb use asymmetry (cylinder) tests were used to assess learning and memory impairment and motor deficits respectively. Blood plasma was used to measure corticosterone concentration and prefrontal tissue was collected for lipid peroxidation, DA, and 5-HT analysis. Our results show that animals exposed to early life stress displayed learning and memory impairment as well as elevated basal plasma corticosterone concentration which were attenuated by treatment with FM. A 6-OHDA lesion effect was evidenced by impairment in the cylinder test as well as decreased DA and 5-HT concentration in the PFC. These effects were attenuated by FM treatment resulting in higher DA concentration in the PFC of treated animals than in non-treated animals. This study suggests that DA and 5-HT signaling in the PFC are responsive to FM and may reduce stress-induced cognitive impairment in PD.
    [Abstract] [Full Text] [Related] [New Search]