These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Local application of paeonol prevents early restenosis: a study with a rabbit vein graft model. Author: Zhang JY, Lei L, Shang J, Huo TM, Zhang B, Chen G, Zeng ZY, Li SK. Journal: J Surg Res; 2017 May 15; 212():278-287. PubMed ID: 28550918. Abstract: BACKGROUND: Neointimal hyperplasia, which is caused by dysfunction of vascular smooth muscle cells and vascular endothelial cells (VECs), is a foundation for later development of vein grafted occlusion. This study investigates whether neointimal hyperplasia could be prevented by the application of paeonol, a phenolic compound having functions of anti-inflammatory, anti-oxidant, and anti-proliferative. METHODS: Autologous jugular veins, which engrafted to carotid arteries in rabbits, were enveloped with paeonol or left untreated. After 0, 2, and 3 wk, vein grafts were respectively harvested. Proliferating cell nuclear antigen, vascular cell adhesion molecule l (VCAM-1), and intercellular cell adhesion molecule 1 were assessed with immunohistochemistry and Western blot. VECs apoptosis was also detected with terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling assay. RESULTS: Paeonol treatment reduced early neointimal hyperplasia by 42%-46% (P < 0.001) and early medial hyperplasia by 18%-22% (P < 0.001) compared with the controls. Immunohistochemical and Western blot results show a significant downregulation of proliferating cell nuclear antigen (P < 0.001) and VCAM-1 (P < 0.001) in paeonol treatment group in the second and third weeks. Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling analysis discovered that VECs apoptosis was also reduced by the paeonol treatment in the second and third weeks (P < 0.001). CONCLUSIONS: Paeonol could prevent vein graft early restenosis by suppressing intimal and medial hyperplasia via inhibition of vascular smooth muscle cells proliferation, VCAM-1 expression, and anti-apoptosis of VECs in grafted veins.[Abstract] [Full Text] [Related] [New Search]