These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Argininic acid alters markers of cellular oxidative damage in vitro: Protective role of antioxidants.
    Author: Delwing-de Lima D, Sasso S, Dalmedico L, Delwing-Dal Magro D, Pereira EM, Wyse ATS.
    Journal: Exp Toxicol Pathol; 2017 Oct 02; 69(8):605-611. PubMed ID: 28554820.
    Abstract:
    We, herein, investigated the in vitro effects of argininic acid on thiobarbituric acid-reactive substances (TBA-RS), total sulfhydryl content and on the activities of antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in the blood, kidney and liver of 60-day-old rats. We also verified the influence of the antioxidants (each at 1.0mM) trolox and ascorbic acid, as well as of NG-nitro-l-arginine methyl ester (L-NAME) at 1.0mM, a nitric oxide synthase inhibitor, on the effects elicited by argininic acid on the parameters tested. The liver, renal cortex and renal medulla were homogenized in 10vol (1:10w/v) of 20mM sodium phosphate buffer, pH 7.4, containing 140mM KCl; and erythrocytes and plasma were prepared from whole blood samples obtained from rats. For in vitro experiments, the samples were pre-incubated for 1h at 37°C in the presence of argininic acid at final concentrations of 0.1, 1.0 and 5.0μM. Control experiments were performed without the addition of argininic acid. Results showed that argininic acid (5.0μM) enhanced CAT and SOD activities and decreased GSH-Px activity in the erythrocytes, increased CAT and decreased GSH-Px activities in the renal cortex and decreased CAT and SOD activities in the renal medulla of 60-day-old rats, as compared to the control group. Antioxidants and/or L-NAME prevented most of the alterations caused by argininic acid on the oxidative stress parameters evaluated. Data suggest that argininic acid alters antioxidant defenses in the blood and kidney of rats; however, in the presence of antioxidants and L-NAME, most of these alterations in oxidative stress were prevented. These findings suggest that oxidative stress may be make an important contribution to the damage caused by argininic acid in hyperargininemic patients and that treatment with antioxidants may be beneficial in this pathology.
    [Abstract] [Full Text] [Related] [New Search]