These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Isolation and characterization of an acyl-CoA thioesterase from dark-grown Euglena gracilis. Author: Larson JD, Kolattukudy PE. Journal: Arch Biochem Biophys; 1985 Feb 15; 237(1):27-37. PubMed ID: 2857556. Abstract: An acyl-CoA hydrolase from dark-grown Euglena gracilis Z was purified 700-fold by subjecting the 105,000g supernatant of the cell-free extract to (NH4)2SO4 precipitation, acid precipitation, calcium phosphate gel treatment, gel filtration on Sephadex G-100, and chromatography on QAE-Sephadex, hydroxylapatite, and CM-Sephadex. Polyacrylamide disc gel electrophoresis of the purified enzyme showed a major protein band (greater than 80%) which contained thioesterase activity and a minor protein band with no thioesterase activity. Molecular weight estimated by gel filtration was 37,000 and sodium dodecyl sulfate-electrophoresis showed one major band (greater than 80%) corresponding to a molecular weight of 37,000 and a minor band of molecular weight 32,000, suggesting that the enzyme was monomeric. The pH optimum of the purified enzyme progressively increased with the chain length of the substrate, with hexanoyl-CoA showing a pH optimum at 4.5 and stearoyl-CoA at 7.0. The rate of hydrolysis of acyl-CoA showed a nonlinear dependence on protein concentration, and bovine serum albumin overcame this effect as well as stimulated the rate. The extent of stimulation by albumin increased with chain length of the substrate up to lauroyl-CoA and then decreased as chain length increased; albumin inhibited the hydrolysis of stearoyl-CoA. This enzyme hydrolyzed CoA esters of C6 to C18 fatty acids with a maximal rate of 17 mumol min-1 mg protein-1 for C14. Typical substrate saturation patterns were obtained with all substrates except that high concentrations were inhibitory. Studies on the effect of pH on the apparent Km and Vmax values for octanoyl-CoA, lauroyl-CoA, and palmitoyl-CoA showed that in all cases Vmax was greatest and Km was lowest at the respective pH optima. Active-serine-directed reagents severely inhibited the thioesterase activity, suggesting the participation of an active serine residue in catalysis; thiol-directed reagents were not effective inhibitors. Diethylpyrocarbonate also inhibited the enzyme and hydroxylamine reversed this inhibition, suggesting the involvement of a histidine residue in catalysis as expected for enzymes containing active serine. This thioesterase did not affect the chain length distribution of the products generated by the Euglena fatty acid synthase I.[Abstract] [Full Text] [Related] [New Search]