These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Non-invasive, multimodal analysis of cortical activity, blood volume and neurovascular coupling in infantile spasms using EEG-fNIRS monitoring. Author: Bourel-Ponchel E, Mahmoudzadeh M, Delignières A, Berquin P, Wallois F. Journal: Neuroimage Clin; 2017; 15():359-366. PubMed ID: 28580292. Abstract: Although infantile spasms can be caused by a variety of etiologies, the clinical features are stereotypical. The neuronal and vascular mechanisms that contribute to the emergence of infantile spasms are not well understood. We performed a multimodal study by simultaneously recording electroencephalogram and functional Near-infrared spectroscopy in an intentionally heterogeneous population of six children with spasms in clusters. Regardless of the etiology, spasms were accompanied by two phases of hemodynamic changes; an initial change in the cerebral blood volume (simultaneously with each spasm) followed by a neurovascular coupling in all children except for the one with a large porencephalic cyst. Changes in cerebral blood volume, like the neurovascular coupling, occurred over frontal areas in all patients regardless of any brain damage suggesting a diffuse hemodynamic cortical response. The simultaneous motor activation and changes in cerebral blood volume might result from the involvement of the brainstem. The inconstant neurovascular coupling phase suggests a diffuse activation of the brain likely resulting too from the brainstem involvement that might trigger diffuse changes in cortical excitability.[Abstract] [Full Text] [Related] [New Search]