These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Substitutions in PBP3 confer resistance to both ampicillin and extended-spectrum cephalosporins in Haemophilus parainfluenzae as revealed by site-directed mutagenesis and gene recombinants. Author: Wienholtz NH, Barut A, Nørskov-Lauritsen N. Journal: J Antimicrob Chemother; 2017 Sep 01; 72(9):2544-2547. PubMed ID: 28582518. Abstract: OBJECTIVES: To determine the association of amino acid substitutions in PBP3 with β-lactam susceptibility in Haemophilus parainfluenzae. METHODS: Single and multiple amino acid mutations at positions 385, 511 and 526 were introduced into PBP3 of a β-lactam-susceptible H. parainfluenzae strain using site-directed mutagenesis. Recombinants were also generated using PCR-amplified ftsI from clinical strains encoding multiple amino acid substitutions. MICs of ampicillin, cefuroxime, cefotaxime and ceftriaxone were determined using Etest®. RESULTS: Transformation of a susceptible strain with ftsI from clinical strains encoding four substitutions in the transpeptidase region of PBP3 conferred resistance to ampicillin, but not to cephalosporins. Introduction of ftsI from a clinical strain encoding eight substitutions conferred resistance to ampicillin, cefotaxime and ceftriaxone. MICs for recombinants were lower than those for the donor strains. Using site-directed mutagenesis, no single substitution conferred resistance to the tested β-lactams, although V511A increased the MIC of cefuroxime to the intermediate category for intravenous administration. Recombinants encoding N526K/H/S in combination with V511A were resistant to ampicillin. Substitution S385T increased the MICs of third-generation cephalosporins if V511A was also present. CONCLUSIONS: Substitutions in PBP3 are sufficient to confer resistance to both ampicillin and third-generation cephalosporins in H. parainfluenzae. A combination of substitutions at positions Val-511 and Asn-526 confers resistance to ampicillin. Resistance to third-generation cephalosporins probably requires more than four substitutions in PBP3.[Abstract] [Full Text] [Related] [New Search]