These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The recognition and characterisation of Finnish Clostridium difficile isolates resembling PCR-ribotype 027.
    Author: Krutova M, Nyc O, Matejkova J, Kuijper EJ, Jalava J, Mentula S.
    Journal: J Microbiol Immunol Infect; 2018 Jun; 51(3):344-351. PubMed ID: 28583353.
    Abstract:
    PURPOSE: To characterise and compare twenty-eight Finnish Clostridium difficile RT027-like isolates, selected based on the presence of 18 bp deletion in the tcdC gene and toxin gene profile (A, B, binary), with eleven RT027 isolates from different Finnish geographical areas and time periods. METHODS: Twenty-eight C. difficile RT027-like isolates and 11 RT027 comparative strains were characterised by capillary-electrophoresis (CE) ribotyping, multi-locus variable tandem-repeats analysis (MLVA), multi-locus sequence typing (MLST), and sequencing of tcdC and gyrA gene fragments. Susceptibility to moxifloxacin was determined by E-test. RESULTS: Of 28 RT027-like isolates, seven RTs (016, 034, 075, 080, 153, 176 and 328), three WEBRIBO types (411, 475, AI-78) and three new profiles (F1-F3) were identified. MLVA revealed six clonal complexes (RTs 016, 027, 176 and F3). MLST showed eleven sequence types (1, 41, 47, 67, 95, 191,192, 223, 229, 264 and new ST). Twenty-two isolates (RTs 016, 080, 176, 328, F1, F2, F3 and WRTAI-78) carried Δ117 in the tcdC gene. Isolates of RTs 016, 027 and 176 were moxifloxacin resistant and harboured Thr82Ile in the GyrA. CONCLUSION: Our results show a high diversity within 28 Finnish RT027-like C. difficile isolates, with twelve CE-ribotyping profiles and eleven STs. MLVA revealed the regional spread of RTs 016, 027, 176 and F3. The presence of Δ117 in the tcdC gene in eight non-027 RTs highlights the importance of careful interpretation of the results from molecular systems targeting this site in the genome of C. difficile and the need of strain typing for epidemiological purposes.
    [Abstract] [Full Text] [Related] [New Search]