These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Prediction of the fertility of stallion frozen-thawed semen using a combination of computer-assisted motility analysis, microscopical observation and flow cytometry. Author: Battut IB, Kempfer A, Lemasson N, Chevrier L, Camugli S. Journal: Theriogenology; 2017 Jul 15; 97():186-200. PubMed ID: 28583604. Abstract: Spermatozoa from some stallions do not maintain an acceptable fertility after freezing and thawing. The selection of frozen ejaculates that would be suitable for insemination is mainly based on post-thaw motility, but the prediction of fertility remains limited. A recent study in our laboratory has enabled the determination of a new protocol for the evaluation of fresh stallion semen, combining microscopical observation, computer-assisted motility analysis and flow cytometry, and providing a high level of fertility prediction. The purpose of the present experiment was to perform similar investigations on frozen semen. A panel of tests evaluating a large number of compartments or functions of the spermatozoa was applied to a population of 42 stallions, 33 of which showing widely differing fertilities (17-67% pregnancy rate per cycle [PRC]). Variability was evaluated by calculating the coefficient of variation (CV=SD/mean) and the intra-class correlation or "repeatability" for each variable. For paired variables, mean within-stallion CV% was significantly lower than between-stallion CV%, which was significantly lower than total CV%. Within-ejaculate repeatability, determined by analysing 6 straws for each of 10 ejaculates, ranged from 0.60 to 0.97. Within-stallion repeatability, determined by analysing at least 5 ejaculates for each of 38 stallions, ranged from 0.12 to 0.95. Principal component regression using a combination of 25 variables, including motility, morphology, viability, oxidation level, acrosome integrity, DNA integrity and hypoosmotic resistance, accounted for 94.5% of the variability regarding fertility, and was used to calculate a prediction of the PRC with a mean standard deviation of 2.2. The difference between the observed PRC and the calculated value ranged from -3.4 to 4.2. The 90% confidence interval (90CI) for the prediction of the PRC for the stallions of unknown fertility ranged from 8 to 30 (mean = 17). The best-fit model using only motility variables, evaluated after 10 min at 36 °C and 2 h at 36 °C or room temperature, accounted for only 74.2% of the variability. The difference between the observed PRC and the calculated value ranged from -7.2 to 14. The 90CI for the prediction of the PRC for the stallions of unknown fertility ranged from 23 to 48 (mean = 33). In conclusion, this study demonstrated that an appropriate combination of computer-assisted motility analysis, microscopical observation and flow cytometry can provide a higher prediction of fertility than motility analysis alone.[Abstract] [Full Text] [Related] [New Search]