These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Efferent inhibition strength is a physiological correlate of hyperacusis in children with autism spectrum disorder. Author: Wilson US, Sadler KM, Hancock KE, Guinan JJ, Lichtenhan JT. Journal: J Neurophysiol; 2017 Aug 01; 118(2):1164-1172. PubMed ID: 28592687. Abstract: Autism spectrum disorder (ASD) is a developmental disability that is poorly understood. ASD can influence communication, social interaction, and behavior. Children with ASD often have sensory hypersensitivities, including auditory hypersensitivity (hyperacusis). In adults with hyperacusis who are otherwise neurotypical, the medial olivocochlear (MOC) efferent reflex is stronger than usual. In children with ASD, the MOC reflex has been measured, but without also assessing hyperacusis. We assessed the MOC reflex in children with ASD by measuring the strength of MOC-induced inhibition of transient-evoked otoacoustic emissions (TEOAEs), a noninvasive physiological measure that reflects cochlear amplification. MOC activity was evoked by contralateral noise. Hyperacusis was assessed subjectively on the basis of the children's symptoms. We found a significant correlation between hyperacusis scores and MOC strength in children with ASD. When children were divided into ASD-with-severe-hyperacusis (ASDs), ASD-with-not-severe-hyperacusis (ASDns), and neurotypical (NT) groups, the last two groups had similar hyperacusis and MOC reflexes, whereas the ASDs group, on average, had hyperacusis and MOC reflexes that were approximately twice as strong. The MOC inhibition of TEOAEs averaged larger at all frequencies in the ASDs compared with ASDns and NT groups. The results suggest that the MOC reflex can be used to estimate hyperacusis in children with ASD and might be used to validate future questionnaires to assess hyperacusis. Our results also provide evidence that strong MOC reflexes in children with ASD are associated with hyperacusis and that hyperacusis is a comorbid condition and is not a necessary, integral part of the abnormal neural processing associated with ASD.NEW & NOTEWORTHY Children with autism spectrum disorder (ASD) are a heterogeneous group, some with hyperacusis and some without. Our research shows that hyperacusis can be estimated in children with ASD by using medial olivocochlear (MOC) reflex measurements. By establishing that an objective measure correlates with attributes of hyperacusis, our results enable future work to enable subtyping of children with ASD to provide improved individualized treatments to at-risk children and those without adequate language to describe their hyperacusis symptoms.[Abstract] [Full Text] [Related] [New Search]