These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Acute effects of binary mixtures of Type II pyrethroids and organophosphate insecticides on Oreochromis niloticus. Author: Fai PBA, Tsobgny Kinfack JS, Tala Towa YJ. Journal: Ecotoxicology; 2017 Sep; 26(7):889-901. PubMed ID: 28593348. Abstract: Pyrethroid and organophosphate insecticides have been used for more than 20 years worldwide to control a variety of insect pest in different settings. These pesticides have been detected in a variety of environmental samples, including surface waters and sediments and therefore there is significant concern about their potential toxic effects on non-target organisms. Mixtures of compounds from these groups of pesticides have been found to frequently show enhanced toxicity but it has been a challenge to predict whether or not enhanced toxicity will occur for a given combination of compounds. This study therefore studied the effects of binary pyrethroid-organophosphate mixtures using cypermethrin, deltamethrin and dimethoate in an acute toxicity test system with Oreochromis niloticus. The 96 h LC50s for individual insecticides were 9.13 µg/l, 9.42 µg/l and 45.52 mg/l for cypermethrin, deltamethrin and dimethoate respectively. These showed that the pyrethroid insecticides were highly toxic to Oreochromis niloticus and were far more toxic than dimethoate. All mixtures were also more toxic than single insecticides throughout the concentration-response curve with mixtures resulting in mortality at concentrations which the individual pesticides in the mixture were below their respective NOECs. In addition, observed mixture toxicities deviated from the predicted mixture effects based either on the Concentration Addition (CA) or Independent Action (IA) models independent of mixture ratio. However, the extent of observed mixture mortality deviation was dependent on the effect level. Significant deviations (MDR > 2.0) were observed at lower concentrations indicating synergistic effects at lower and possibly environmentally relevant concentrations. This is not unexpected since organophosphate insecticides are known to inhibit acetylcholinesterase as well as inactivate esterase, resulting in reduced detoxification of pyrethroid insecticides and consequently greater toxicity than would be expected. This has important implications for risk assessment of mixtures since the risk of pyrethroid-organophosphate mixtures may be underestimated if either the CA or IA model is employed.[Abstract] [Full Text] [Related] [New Search]