These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: High effectiveness of Rhizophagus irregularis is linked to superior modulation of antioxidant defence mechanisms in Cajanus cajan (L.) Millsp. genotypes grown under salinity stress.
    Author: Pandey R, Garg N.
    Journal: Mycorrhiza; 2017 Oct; 27(7):669-682. PubMed ID: 28593465.
    Abstract:
    Salinity stress leads to the production of reactive oxygen species (ROS) which can cause oxidative damage in plants. A correlation between antioxidant capacity and salt tolerance has been demonstrated in several plant species, which may be enhanced by inoculation with arbuscular mycorrhizal fungi (AMF). However, plant responses to mycorrhization may differ depending on the host plant as well as AMF isolate. It has been proposed that AMF sourced from stressed environments may be better suited as stress ameliorators than non-native/exotic ones. The present study compared the effectiveness of a native inoculum from saline soil and two exotic single isolates, Funneliformis mossseae and Rhizophagus irregularis (single or dual mix), and associated their effectiveness with modulation of antioxidant defence, in two Cajanus cajan (pigeonpea) genotypes (salt sensitive-Paras, salt tolerant-Pusa 2002) under NaCl stress. Plants subjected to NaCl (0-100 mM) recorded a substantial build-up of ROS, more in Paras than Pusa 2002. Although mycorrhization with all AMF improved plant biomass and reduced oxidative burst by strengthening antioxidant enzymatic activities, inoculation with R. irregularis (alone or in combination with F. mosseae) resulted in higher biomass accumulation which correlated with its higher root colonization and improved redox stability through rapid recycling of reduced ascorbate and glutathione. The study thus suggested that mitigation of salt-induced oxidative burden by increased activation of scavenging antioxidants is an important mechanism that determined the higher effectiveness of R. irregularis over the native saline mix in pigeonpea plants.
    [Abstract] [Full Text] [Related] [New Search]