These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Highly Efficient All-Solution-Processed Fluorescent Organic Light-Emitting Diodes Based on a Novel Self-Host Thermally Activated Delayed Fluorescence Emitter.
    Author: Ban X, Zhu A, Zhang T, Tong Z, Jiang W, Sun Y.
    Journal: ACS Appl Mater Interfaces; 2017 Jul 05; 9(26):21900-21908. PubMed ID: 28593760.
    Abstract:
    Here, we conveniently designed and synthesized a self-host thermally activated delayed fluorescence (TADF) emitter, which can not only form a uniform thin film through wet-process, but also allow the subsequently deposition of electron transporting layer (ETL) by orthogonal solvent. By using this self-host material as emitter, the all-solution-processed multilayer TADF organic light emitting diodes (OLEDs) was successfully fabricated. The maximum current, power and external quantum efficiencies of this nondoped device are 46.3 cd A-1, 39.3 lm W1- and 15.5%, respectively, which are much higher than the values of all-solution-processed OLEDs based on tranditional fluorescence and even comparable to the TADF devices with vacuum-deposited ETL. Moreover, the device maintains the high efficiency of 42.9 cd A-1 and 39.0 cd A-1 at the luminance of 100 cd m-2 for display and 1000 cd m-2 for practical lighting. The high efficiency and small efficiency roll-off of the all-solution-processed fluorescent OLEDs can be attributed to the superiority of the newly designed self-host TADF emitter, which possesses the perfect electroluminescent property and sufficient solvent resistance at the same time.
    [Abstract] [Full Text] [Related] [New Search]