These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ultramicroscopic localization of cationized antigen in the glomerular basement membrane in the course of active, in situ immune complex glomerulonephritis.
    Author: Oite T, Shimizu F, Suzuki Y, Vogt A.
    Journal: Virchows Arch B Cell Pathol Incl Mol Pathol; 1985; 48(2):107-18. PubMed ID: 2859686.
    Abstract:
    The sequence of antigen localization and the interaction of immune deposits with the anionic sites of the glomerular basement membrane (GBM) were investigated in an active model of in situ immune complex glomerulonephritis using a cationized ferritin. Three weeks after immunization with native horse spleen ferritin, the left kidneys of rats were perfused with 500 micrograms of cationized ferritin through the left renal artery. One h after renal perfusion, most of ferritin particles localized subendothelially, corresponding to the anionic sites of the lamina rara interna. In the glomerular capillary loops, infiltrating polymorphonuclear leukocytes and monocytes were seen. Some of these monocytes were in direct contact with immune complexes containing ferritin aggregates associated with anionic sites of the lamina rara interna. At 24 h, numerous ferritin aggregates were present subepithelially, preferentially beneath the slit membrane. The subepithelial location of ferritin did not always correspond to the anionic sites of the lamina rara externa. From days 3 to 7, there was remarkable endocapillary cell proliferation in some loops and pronounced effacement of epithelial foot processes. Focal detachment of epithelium from the GBM was observed occasionally. From days 14 to 28, most of ferritin aggregates were located intramembranously and subepithelially. Membranous transformation has already begun around the subepithelial deposits. This morphological study provides insight into the fate of immune deposits and injury to the GBM in the glomerulonephritis.
    [Abstract] [Full Text] [Related] [New Search]