These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Further investigations on the inorganic phosphate binding site of beef heart mitochondrial F1-ATPase.
    Author: Pougeois R, Lauquin GJ.
    Journal: Biochemistry; 1985 Feb 12; 24(4):1020-4. PubMed ID: 2859884.
    Abstract:
    The possibility that 4-azido-2-nitrophenyl phosphate (ANPP), a photoreactive derivative of inorganic phosphate (Pi) [Lauquin, G., Pougeois, R., & Vignais, P. V. (1980) Biochemistry 19, 4620-4626], could mimic ATP was investigated. ANPP was hydrolyzed in the dark by sarcoplasmic reticulum Ca2+-ATPase in the presence of Ca2+ but not in the presence of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. ANPP was not hydrolyzed by purified mitochondrial F1-ATPase; however, ADP and ATP protected F1-ATPase against ANPP photoinactivation. On the other hand, the trinitrophenyl nucleotide analogues (TNP-ADP, TNP-ATP, and TNP-AMP-PNP), which bind specifically at the two catalytic sites of F1-ATPase [Grubmeyer, C., & Penefsky, H. (1981) J. Biol. Chem. 256, 3718-3727], abolished Pi binding on F1-ATPase; they do not protect F1-ATPase against ANPP photoinactivation. Furthermore, ANPP-photoinactivated F1-ATPase binds the TNP analogues in the same way as the native enzyme. The Pi binding site of F1-ATPase, which is shown to be photolabeled by ANPP, does not appear to be at the gamma-phosphate position of the catalytic sites.
    [Abstract] [Full Text] [Related] [New Search]