These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dual signal amplification strategy of Au nanopaticles/ZnO nanorods hybridized reduced graphene nanosheet and multienzyme functionalized Au@ZnO composites for ultrasensitive electrochemical detection of tumor biomarker.
    Author: Fang X, Liu J, Wang J, Zhao H, Ren H, Li Z.
    Journal: Biosens Bioelectron; 2017 Nov 15; 97():218-225. PubMed ID: 28600990.
    Abstract:
    Herein, a dual signal amplification strategy was employed in fabricating ultrasensitive electrochemical immunosensor for alpha fetoprotein (AFP) detection, which was realized by utilizing of ZnO nanorods/Au nanopaticles hybridized reduced graphene nanosheet (Au/ZnO/RGO) and horseradish-peroxidase (HRP) bioconjugated detection antibody (Ab2) functionalized Au@ZnO (Ab2/HRP-Au@ZnO). During the fabrication of the immunosensor, a new kind of multiple-head surfactants CxN3 with different alkyl chain length played important roles such as acting as the surfactants of Au/ZnO/RGO and the reductant agents of Au@ZnO composite. Due to the good adsorption property and large surface area of Au/ZnO/RGO, plenty of the capture antibodies (Ab1) were immobilized on the electrode surface, and trace AFP was sensitively monitored. Furthermore, Ab2/HRP-Au@ZnO exhibited high affinity interaction with AFP through "sandwich" immunoreactions, along with the peroxidase-like catalytic activity of Au@ZnO, leading to a further enhancement in the sensitivity of the proposed immunosensor. The successful synthesis of the nanomaterials was characterized through a serious of techniques including Raman, XRD, FT-IR, SEM and UV-vis. Under the optimal conditions, two linear ranges of 0.02-10,000 and 10,000-100,000pgmL-1 AFP with a lower detection limit of 0.01pg mL-1 (S/N=3) was obtained. Especially, the proposed AFP immunosensor can be applied to detect human serum samples with satisfactory results, indicating a potential application in clinical monitoring of tumor biomarkers.
    [Abstract] [Full Text] [Related] [New Search]