These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cation-dependent reassembly of F0F1-ATPase in submitochondrial particles: evidence for a binding site for F1 on F0 in the absence of F6 and oligomycin sensitivity-conferring protein.
    Author: Sandri G, Wojtczak L, Ernster L.
    Journal: Arch Biochem Biophys; 1985 Jun; 239(2):595-602. PubMed ID: 2860874.
    Abstract:
    Bovine heart submitochondrial particles depleted of F1, OSCP (oligomycin sensitivity-conferring protein), and F6 require the presence of cations to rebind F1. Among the cations tested, NH4+, Cs+, and Rb+ were most efficient, followed by K+, Na+, Li+, Ca2+, and Mg2+. The extent of F1 binding approached that occurring upon supplementation with F6 and/or OSCP, and was similar to the F1 content of particles prior to depletion. In the absence of cations, F6 and/or OSCP were ineffective in promoting the binding of F1 to the depleted particles. The F1 bound to the particles in the presence of cations alone was completely insensitive to oligomycin. It remained bound to the particles after removal of the cation, and could be rendered partially (approximately 50%) or maximally (less than 80%) oligomycin-sensitive upon the subsequent addition of OSCP or of F6 and OSCP, respectively. The surface potential of the particles, as determined by microelectrophoresis, was screened by all cations tested, regardless of their ability to promote the binding of F1; this was in contrast to earlier findings with particles depleted of F1 only, where the ability of cations to promote the rebinding of F1 paralleled their efficiency to neutralize the surface charge of the particle membrane. It is concluded that the effect of cations on the binding of F1 to F1-, F6-, and OSCP-depleted particles is due to a specific interaction of the cations with certain segments or components of the membrane. The results suggest the existence of a binding site for F1 on F0 in addition to the binding site(s) provided by F6 and OSCP.
    [Abstract] [Full Text] [Related] [New Search]