These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Activation of factor XII and prekallikrein with polysaccharide sulfates and sulfatides: comparison with kaolin-mediated activation.
    Author: Shimada T, Sugo T, Kato H, Yoshida K, Iwanaga S.
    Journal: J Biochem; 1985 Feb; 97(2):429-39. PubMed ID: 2861197.
    Abstract:
    The activation of Factor XII and prekallikrein by polysaccharide sulfates and sulfatides in the presence of high-molecular-weight (HMW) kininogen was studied, and compared with the kaolin-mediated activation reaction. Among a variety of artificially-sulfated polysaccharides and native polysaccharide sulfates, amylose sulfate (M.W.= 380,000 and sulfur content, 19.1%) and sulfatide were found to have the most efficient ability to trigger the activation of prekallikrein by Factor XII. The effects of these two kinds of negatively-charged surfaces on the following three activation reactions were compared; the activation of prekallikrein by Factor XII (reaction 1), the activation of Factor XII by kallikrein (reaction 2) and the activation of prekallikrein by Factor XIIa (reaction 3). All three reactions mediated by the selected surfaces were strongly accelerated by HMW kininogen and its derivatives, kinin-free protein and fragment 1.2-linked light chain, like the kaolin-mediated activation. However, this accelerating effect of HMW kininogen on the amylose sulfate- and sulfatide-mediated activations (reaction 1) was diminished after treatment with fluorescein iso-thiocyanate, whereas the effect on the kaolin-mediated activation was not influenced by fluorescein-labeling. In addition, reaction 2 mediated by amylose sulfate and sulfatide was extremely slow even in the presence of HMW kininogen, and the results also differed from those with kaolin. The sulfatide-mediated activation of reaction 1 was not inhibited by fragment 1.2 (His-rich fragment), which is released from HMW kininogen by the action of kallikrein, and is known to be a potent inhibitor of the kaolin-dependent activation. These results indicate that the mechanisms responsible for surface activation triggered by soluble amylose sulfate, sulfatide micelles and kaolin differ from each other as regards the molecular interaction with the contact factors.
    [Abstract] [Full Text] [Related] [New Search]