These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Biochemical characterization of the nicotinic cholinergic receptors in human brain: binding of (-)-[3H]nicotine. Author: Shimohama S, Taniguchi T, Fujiwara M, Kameyama M. Journal: J Neurochem; 1985 Aug; 45(2):604-10. PubMed ID: 2861250. Abstract: (-)-[3H]Nicotine was found to bind specifically to membranes of human brains obtained at autopsy. The binding was stereospecific, (-)-nicotine being 40 times more potent than (+)-nicotine in displacing labeled (-)-nicotine. Saturation binding studies revealed the presence of two binding sites with dissociation constant (KD) values of 8.1 and 86 nM, and maximum binding capacity (Bmax) values of 36 and 90 fmol/mg protein, respectively. In competition studies, nicotinic agonists were 1,000 times more potent than ganglionic, neuromuscular, and muscarinic blocking drugs in displacing labeled (-)-nicotine. IC50 values for cholinergic drugs of (-)-[3H]nicotine binding were as follows: (-)-nicotine, 0.51 nM; acetylcholine, 12.6 nM; (+)-nicotine, 19.9 nM; cytisine, 27.3 nM; and carbachol, 527 nM. IC50 values of alpha-bungarotoxin, hexamethonium, d-tubocurarine, and atropine were larger than 50 microM. (-)-[3H]Nicotine binding was highest in the nucleus basalis of Meynert and thalamus and lowest in the cerebral cortex and caudate in the brain regions tested. These results suggest that nicotinic cholinergic receptors are present in human brain and that there are regional differences in the density of these receptors.[Abstract] [Full Text] [Related] [New Search]