These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Arbuscular mycorrhizal fungi enhance the copper tolerance of Tagetes patula through the sorption and barrier mechanisms of intraradical hyphae.
    Author: Zhou X, Fu L, Xia Y, Zheng L, Chen C, Shen Z, Chen Y.
    Journal: Metallomics; 2017 Jul 19; 9(7):936-948. PubMed ID: 28613326.
    Abstract:
    Arbuscular mycorrhizal fungi (AMF) are widespread soil fungi that can form endosymbiotic structures with the root systems of most plants and can improve the tolerance of host plants to heavy metals. In the present study, we investigated the effects of AMF (Glomus coronatum) inoculation on the tolerance of Tagetes patula L. to Cu. Almost all of the non-mycorrhizal plants exposed to 100 μM Cu died after 3 d, whereas phytotoxicity was only observed in mycorrhizal plants that were exposed to Cu concentrations greater than 100 μM. Analysing the dynamic accumulation of Cu indicated that, after 7 d of Cu exposure, less Cu was absorbed or accumulated by mycorrhizal plants than by control plants, and significantly less Cu was translocated to the shoots. Meanwhile, analysing the root morphology, the integrity of the root plasma membranes, the photosynthesis rate, and the content of essential elements of plants growing in cultures with 50 μM Cu revealed that AMF inoculation markedly alleviated the toxic effects of Cu stress on root system activity, photosynthesis rate, and mineral nutrient accumulation. In addition, to understand the Cu allocation, an energy spectrum analysis of Cu content at the transverse section of root tips was conducted and subsequently provided direct evidence that intraradical hyphae at the root endodermis could selectively immobilise large amounts of Cu. Indeed, the sorption and barrier mechanisms of AMF hyphae reduce Cu toxicity in the roots of T. patula and eventually enhance the plants' Cu tolerance.
    [Abstract] [Full Text] [Related] [New Search]