These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dynamics of CMY-2 producing E. coli in a broiler parent flock.
    Author: Dame-Korevaar A, Fischer EAJ, Stegeman A, Mevius D, van Essen-Zandbergen A, Velkers F, van der Goot J.
    Journal: Vet Microbiol; 2017 May; 203():211-214. PubMed ID: 28619146.
    Abstract:
    Extended-spectrum β-lactamase and plasmid mediated AmpC β-lactamase (ESBL/pAmpC) producing bacteria are resistant to Extended Spectrum Cephalosporins (ESC), and are present in all levels of the broiler production chain. We determined the prevalence, concentration, and persistence of ESBL/pAmpC-Escherichia coli in a broiler parent flock during the rearing and laying period. One-day old chickens were housed in four separate pens. Until week 33 no antibiotics or coccidiostatics were used. During rearing 57 chickens in each pen (n=228), and in the laying period two groups of 33 chickens were individually sampled (n=66). Environmental samples were taken from week 16 onwards. ESBL/pAmpC-E. coli presence was determined by selective culturing. In the samples of week 16-19 the concentration of ESBL/pAmpC-E. coli was determined. All ESC-resistant isolates found were positive for pAmpC gene blaCMY-2 located on IncA/C plasmids, in several E. coli MLST types. CMY-2-E. coli prevalence decreased from 91% (95%CI 86-94%) at day 7 (week 1) to 0% (95%CI 0-5%) in week 21. However, CMY-2-E. coli remained present in the environmental samples during the whole study. CMY-2-E. coli concentration varied between detection limit (<10^3) and 2·10^4 cfu/g faeces. The sharp reduction of CMY-2-E. coli in this broiler parent flock in absence of antibiotics suggests a selective disadvantage of blaCMY-2 on IncA/C plasmids on animal level. The underlying mechanism should be studied further as this may provide new insights on how to reduce ESBL/pAmpC prevalence and transmission in the broiler production chain.
    [Abstract] [Full Text] [Related] [New Search]