These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: miR-139-5p Represses BMSC Osteogenesis via Targeting Wnt/β-Catenin Signaling Pathway.
    Author: Long H, Sun B, Cheng L, Zhao S, Zhu Y, Zhao R, Zhu J.
    Journal: DNA Cell Biol; 2017 Aug; 36(8):715-724. PubMed ID: 28622009.
    Abstract:
    Osteogenesis of mesenchymal stem cells (MSCs) has played a necessary role in the repair of bone. According to some reports, microRNAs participate in different physiological activity of the cells, including cell differentiation. This study investigated the function that miR-139-5p plays in the osteogenic differentiation of human bone marrow MSCs (hBMSCs). In addition to miR-139-5p, the effects of alkaline phosphatase (ALP), a membrane-bound metalloenzyme that is considered an early osteogenic differentiation marker, have also been investigated. Calcium-rich deposit (mineralization) is also a typical osteogenic differentiation marker that could be visualized by alizarin red S (ARS) staining. Inhibiting miR-139-5p notably promotes the hBMSC osteoblast differentiation, which, however, will be reduced by overexpressed miR-139-5p. This result has been made based on the alternations of ALP activity, ARS staining, as well as expression of osteogenic genes, including runt-related gene-2 (Runx2), collagen I (Col-1), and osteocalcin (OCN). miR-139-5p exerts its role in BMSC osteogenesis most probably through the Wnt/β-catenin pathway, by direct targeting CTNNB1 and frizzled 4 (FZD4), essential factors of Wnt/β-catenin pathway. In conclusion, according to the present study, inhibiting miR-139-5p could be a promising strategy in hBMSC osteogenesis.
    [Abstract] [Full Text] [Related] [New Search]