These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Super-Resolution Microscopy and Single-Protein Tracking in Live Bacteria Using a Genetically Encoded, Photostable Fluoromodule.
    Author: Saurabh S, Perez AM, Comerci CJ, Shapiro L, Moerner WE.
    Journal: Curr Protoc Cell Biol; 2017 Jun 19; 75():4.32.1-4.32.22. PubMed ID: 28627757.
    Abstract:
    Visualization of dynamic protein structures in live cells is crucial for understanding the mechanisms governing biological processes. Fluorescence microscopy is a sensitive tool for this purpose. In order to image proteins in live bacteria using fluorescence microscopy, one typically genetically fuses the protein of interest to a photostable fluorescent tag. Several labeling schemes are available to accomplish this. Particularly, hybrid tags that combine a fluorescent or fluorogenic dye with a genetically encoded protein (such as enzymatic labels) have been used successfully in multiple cell types. However, their use in bacteria has been limited due to challenges imposed by a complex bacterial cell wall. Here, we describe the use of a genetically encoded photostable fluoromodule that can be targeted to cytosolic and membrane proteins in the Gram negative bacterium Caulobacter crescentus. Additionally, we summarize methods to use this fluoromodule for single protein imaging and super-resolution microscopy using stimulated emission depletion. © 2017 by John Wiley & Sons, Inc.
    [Abstract] [Full Text] [Related] [New Search]